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Abstract

This paper studies a model of “pivotal protesting,” in which citizens act in order to
change the outcome rather than to collect private benefits. We show that, when citi-
zens face repeated opportunities to protest against a regime, pivotal protesting entails
complex dynamic considerations: the continuation value of the status quo influences
the citizens’ willingness to protest today. Thus, a mere change in expectations about
the future may trigger a revolt. The same logic often induces a pattern of protest
cycles, driven by a novel source of inefficiency: an expectation that a protest will take
place tomorrow can excessively sap incentives to coordinate on protesting today. Thus,
potential protests crowd each other out. This can lead to a form of collective procras-
tination: access to more opportunities to protest can lower the citizens’ welfare, as
collective action becomes inefficiently delayed.
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1 Introduction

The timing of mass protests often appears random and is hard to predict: outpourings of
anger often manifest grievances that have simmered for years or decades. In some instances,
protests arrive in cycles, repeatedly swelling and waning even with no major change in
fundamentals that would explain the pattern. For example, the Chilean protests in 2006,
2008, 2011, and 2019 were sparked by minor events such as changes to subway fares, but in
fact responded to long-standing issues of low funding for education, economic inequality and
disenfranchisement, as reflected in the chant: no son 30 pesos, son 30 años (“it’s not about
30 pesos, it’s about 30 years”) (Borzutzky and Perry, 2021).

Moreover, when patterns of protest do follow fundamentals, they often respond to such
things as current well-being and the threat or promise of future changes, rather than swings
in the private benefits available to participants, which rational choice models of collective
action would consider paramount (Tullock, 1971; Olson, 1965; Lichbach, 1995). For instance,
the 2019–2020 protests in Hong Kong were triggered by the introduction of a proposed bill
that would have allowed extraditions to mainland China. Similarly, Ukraine’s 2013-2014
Euromaidan protests were sparked by Yanukovych postponing a promised integration agree-
ment with the European Union, and instead seeking closer ties with Russia. Protesters, when
asked, articulate such forward-looking rationales: “If we don’t succeed now, our freedom of
speech, our human rights, all will be gone.”1

In this paper, we present a novel theory that provides a unified explanation for these
stylized facts. We study a model of repeated protests in which citizens can attack the regime
(protest, mobilize) in each of many periods, and receive information about the potential gain
from doing so in each period.2 Our model uses the machinery of global games (Carlsson and
Van Damme, 1993) and is in many ways canonical.3 The key driver of our results is that, in
our model, the citizens are not motivated by private benefits, but (at least partly) by their
own agency: the probability that their participation will be decisive.

The model yields a constellation of intuitive results that resonate with the substantive
literature but are hard to obtain in conventional formal models of mass protest. Citizens
motivated by their own agency respond not to the expected probability that a protest will

1https://www.reuters.com/article/us-hongkong-protests-radicals/now-or-never-hong-kong-
protesters-say-they-have-nothing-to-lose-idUSKCN1VH2JT

2In keeping with the literature on protests, we will speak of a regime and protesters seeking regime change,
but the model applies equally to movements seeking major policy changes in democracies by non-electoral
means.

3In global games, first used to study coordination games such as currency attacks (Morris and Shin, 1998),
players obtain noisy information (e.g., about regime strength) and then act simultaneously. The inability to
coordinate behavior perfectly due to slight differences in information often yields equilibrium uniqueness.
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succeed but to the marginal probability that their participation will change the outcome.
As a result, citizens may participate even if all benefits from protesting are public, while
costs are private. Because public benefits are simply the gap between continuation values
under regime chance and the status quo, protests respond both to the “carrot” of a better
post-revolutionary outcome and the “stick” of an increase in deprivation under the regime
(Gurr, 1970), be it current or expected, and material or, e.g., representational. In particular,
a mere change in expectations can trigger a protest.

Moreover, agency-driven protesting tends to feature cycles of protest, even when funda-
mentals are stable over time. The reason has to do with the fact that citizens display a bias
towards inaction, for two reasons: they do not fully internalize the social benefits of their
participation, and they cannot be sure that others will join them if they protest, since the
citizens’ signals are imperfectly aligned. Under this bias, an expectation that citizens will
coordinate on protesting tomorrow saps incentives to coordinate on protesting today, over
and above their baseline static reluctance to act. Thus, even when fundamentals are high
enough in every period that a protest would occur today if this were the last chance, the
equilibrium features some periods in which citizens coordinate on protesting, and others in
between where the expectation of a near-enough protest in the future crowds out today’s
would-be protest, inducing a form of collective procrastination or paralysis of options. Col-
lective procrastination can be socially inefficient, to the point where citizens would be better
off if future chances to protest were taken away, as this would spur them to act today. In
particular, even when the status quo is steadily deteriorating, protests may arrive not when
they are most profitable or likely to succeed, but when there are no second chances left.

On a technical level, the key difference between our model and existing models of protest
is simply that we assume a finite population. When the population is finite, the participation
of one additional individual citizen has a real—albeit small—probability of being decisive.
In contrast, most models of protest assume a continuous population, in which each citizen
necessarily acts as a pure “price-taker,” who would never act in the absence of private
benefits. Simply assuming any finite population size activates all of the channels that we
focus on. Of course, if the relevant population numbers in the millions, the forces behind
our results, though present, are very small, as each citizen is very unlikely to be pivotal.
But, as we show in Section 6.1, pivotal protesting remains relevant for any population size
if protesters display a modicum of altruism towards their fellow citizens, a form of civic-
mindedness.4

4This point mirrors an observation in the voting literature that rational models of turnout predict unreal-
istically low turnout (Feddersen, 2004), but augmenting such models with a small degree of altruism towards
fellow citizens (Myatt, 2015) or civic-duty motives (Feddersen and Sandroni, 2006) remedies this problem in
a more satisfactory way than models of purely expressive voting, e.g., by correctly predicting that turnout
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2 Related Literature

Our paper contributes to a growing literature modeling mass protests as global games. In
many such formal models (Casper and Tyson, 2014; Tyson and Smith, 2018; Bueno De
Mesquita and Shadmehr, 2023), citizens are motivated by private benefits, available only
to those who took part in a successful protest. Other models assume intangible “warm
glow” payoffs from expressing discontent (Persson and Tabellini, 2009; Little, Tucker and
LaGatta, 2015; Egorov and Sonin, 2021). If these payoffs accrue only when the protest
succeeds (e.g. “pleasure in agency”; Wood 2003, Morris and Shadmehr 2023), they operate
similarly to private benefits. In either case, the incentive to participate depends on the size
of excludable benefits and the total (not marginal) probability of success.

In most of this literature, the population is infinite. Each citizen thinks herself powerless
to change the outcome, so her action cannot shift the probability of receiving public benefits.
Therefore, public benefits become irrelevant in the citizens’ strategic calculus.

The upshot of this irrelevance becomes clear in models of repeated global games, which
are closely related to our paper. In Angeletos, Hellwig and Pavan (2007) and Little (2017), an
infinite number of agents—driven by private benefits—choose whether to attack a regime in
each of many periods. The agents, though rational and forward-looking, behave myopically:
information about future opportunities to attack, for example, has no impact on equilibrium
play today. In particular, play in the first period is as in a static global game. The reason is
that continuation payoffs if the game continues are an exogenous windfall from any individual
agent’s point of view. For the same reason, collective procrastination cannot arise.

This contrasts with our results, in which future threats and opportunities play a central
role. A phenomenon reminiscent of protest cycles can arise in Angeletos et al. (2007) and
Little (2017), though for different reasons: these models assume that regime strength does
not change, so agents learn about it over time, both from new signals and from the very fact
that the regime must have been relatively strong if it survived past attacks.

A broader formal literature studies games of regime change with a single opportunity to
attack. The focus is often on how different information structures shape coordination, and
how different groups interact. Hollyer, Rosendorff and Vreeland (2015) and Little (2012),
for example, study how macroeconomic indicators and electoral results respectively can act
as public signals that catalyze coordination. Such signals are generated endogenously in
Casper and Tyson (2014): failed mass protests reveal anti-regime sentiment, inducing elites
to attempt a coup. Boix and Svolik (2013) examine the role of information generated by
power-sharing agreements in coordinating behavior by elites. In all of these papers, as

will be higher in close elections (Blais, 2000).
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here, actions are strategic complements. In Tyson and Smith (2018), the regime has both
opponents and adherents; actions are strategic substitutes across groups. Another strand
of the literature considers interventions by the regime to manipulate payoffs or information
(Angeletos, Hellwig and Pavan, 2006; Edmond, 2013).

Although not about regime change, Chassang and Padró i Miquel (2010) and Chassang
(2010) do incorporate forward-looking concerns in a dynamic coordination game. Both
papers study two-player dynamic cooperation games with exit: when one player exits (e.g.,
attacks the other) the game ends. Their model is related to a variant of ours, discussed in
Appendix A.9, in which the game ends when the protest fails rather than when it succeeds.
The assumption that the game ends when cooperation fails leads to different incentives and
results—in particular, cycles and procrastination do not arise.

In another strand of the literature, focused on intra-attack dynamics, there is a single
attack which agents can join at different times (Dasgupta, 2007; Shadmehr and Bernhardt,
2019). In these models, extremists may protest first, but all citizens are tempted to wait and
join a protest later—to gain information from others’ actions and ensure they are not left
as the lone protester. Thus, both free-riding and bandwagoning or cascades (Kuran, 1991;
Lohmann, 1994) are possible. These effects do not appear in our model: since each period
represents a different protest, there is no such thing as joining a protest “later.”

3 The Model

We model a set N = {1, . . . , n} (n ≥ 2) of citizens who repeatedly choose whether to
“attack” (protest, mobilize) or not. Time is discrete and finite: t ∈ {1, . . . , T}. The payoffs
from a successful attack in period t are governed by a parameter θt ∼ N(µt, σ

2
θ), drawn

independently across periods.
The information structure and timing of the game are as follows. At the beginning of

each period t, if the game has not yet ended, Nature draws the value of θt and then reveals
to each player i a signal

xit = θt + ϵit,

where ϵit ∼ N(0, σ2
ϵ ) is independent across players and periods.

Each player i ∈ N then simultaneously chooses to attack (ait = 1) or abstain (ait = 0).
These actions result in the regime being overthrown with probability f(lt), where lt =

∑n
i=1 ait
n

denotes the fraction of the population who attack in period t. If the regime falls, the players
receive some terminal payoffs, described below, and the game ends. With probability 1−f(lt),
the game continues in the next period. (At the end of period T , the game ends even if the
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regime survives.) We assume that f is smooth, increasing and convex. More formally, f is
twice continuously differentiable; 0 ≤ f(0) < f(1) ≤ 1; f ′(l) > 0 and f ′′(l) > 0 for all l;
and 0 < inf l∈(0,1) f

′′(l) ≤ supl∈(0,1) f
′′(1) < ∞. A simple example is given by any quadratic

function, f(lt) = b0 + b1lt + b2l
2
t , with b0 ≥ 0, b1, b2 > 0, and b0 + b1 + b2 ≤ 1.

Payoffs

We assume a common discount factor δ ∈ (0, 1). Letting uit be player i’s flow payoff in
period t, we denote i’s discounted payoffs from period t onwards by Uit =

∑
t≤τ≤T δ

τ−tuiτ .
Flow payoffs are as follows. Each citizen i who attacks in a period t bears a flow cost of

attacking c > 0 in that period. If the regime falls in period t, then all agents also receive a
one-time payoff θt defined above, and the game ends. If the regime survives in period t, all
agents instead accrue a known status quo flow payoff νt, and the game moves on to the next
period.5 Note that all agents receive either θt or νt, as appropriate, regardless of whether
they attacked in that period.

Our solution concept is Perfect Bayesian Equilibrium.

Assumptions: Interpretation and Discussion

Our model takes after existing workhorse models of protests in the global games literature.
We depart from the standard assumptions when necessary to obtain a model that clearly
highlights the forces we are interested in. Some of these departures are worth discussing.

First, we assume that the benefits from a successful revolt are public. Although there is
evidence that both private and public benefits matter in practice (Cantoni, Yang, Yuchtman
and Zhang, 2019; Muller and Opp, 1986), models in this literature typically focus on private
benefits (Angeletos et al., 2007; Edmond, 2013; Little, 2017).6 In Section 6, we show that
the general logic of our results survives if we allow for both private and public benefits.

Second, the payoff from revolution is affected by the state of the world, θt, but the
probability of a successful revolt, f(lt), is not directly affected by the state. A natural
interpretation is that θt parameterizes the expected outcome after a revolution—for example,
the ideology or competence of a de facto opposition leader—rather than the regime’s ability
to stave off protesters. This assumption is for simplicity; qualitatively similar results hold if

5As written, the model assumes that, after period T , there are no more protesting opportunities nor
status quo payoffs. We could instead assume that status quo payoffs νT+1, νT+2, . . . keep accruing forever if
the regime survives through period T . Adding such “post-terminal” payoffs is equivalent to bundling them
into the period-T status quo payoff, i.e., setting ν̃T =

∑
t≥T δt−T νt.

6An exception is Shadmehr (2021), which also considers altruism as in Section 6.1, albeit in a static
model.
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there is uncertainty about the function f , or other payoff parameters such as νt or c.
Third, the probability of a successful revolt, f(lt), is increasing and convex in the size

of the protest. The convexity assumption guarantees that even in the presence of pivotality
concerns actions are strategic complements: the marginal impact of an additional protester
is higher the more protesters there are.7 This assumption best models settings in which
overthrowing the regime is “hard” and requires a large mass of protesters, whereas concavity
of f might be natural if a moderate crowd is sufficient, so there are diminishing returns for
lt large. The model is not intractable if we assume that f is concave—leading to strategic
substitutability—though the equilibrium strategies would involve some degree of mixing, and
procrastination would no longer arise due to fears of miscoordination.8

It is worth comparing our setup to the most popular payoff specification in global games
(Morris and Shin, 1998; Dasgupta, 2007; Angeletos et al., 2007; Shadmehr, 2021; Little, 2017;
Shadmehr and Bernhardt, 2019; Edmond, 2013), in which attackers receive 1−c if successful
and −c if unsuccessful, but only succeed if l ≥ 1 − θ. This specification is inconvenient for
our purposes because it only yields a supermodular game when pivotality concerns—which
are central to our analysis—are absent.9 However, much like the canonical framework, our
setup yields a tractable expression for the marginal payoff of protesting, which is the key
object of interest.

Fourth, we assume that regime change ends the game. This assumption is less sub-
stantively restrictive than it might appear: the payoff θt represents the citizens’ expected
continuation utility from a new regime starting in period t+ 1. The new regime could itself
face protests. Such possibilities are all captured by the payoff θt.

Finally, we assume that the state of the world θt is drawn independently across periods.
This contrasts with Angeletos et al. (2007) and Little (2017), in which the state is drawn
once. However, our model allows the mean of the state in each period to follow an arbitrary
sequence (µt)t=1,...,T . In Section 6 we show that persistent shocks can be accommodated, if
any information about them is commonly observed; the key assumption keeping our model
tractable is merely that the idiosyncratic uncertainty about θt is transient. (In our analysis,
we focus on the case of σ2

ϵ small, so it is substantively unimportant whether the idiosyncratic
shocks are persistent or transient.)

7In a model with no pivotality concerns it is enough to assume that f is increasing.
8Procrastination could still arise due to the free-riding effect discussed at the end of Section 5.
9Technically, fθ(l) = 1l≥1−θ is a step function, hence not convex in l.
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Figure 1: Equilibrium payoffs, when there is either one or two opportunities to protest, and
socially optimal payoff, as a function of µ.

4 Two-Player Example

To build intuition, we start with a two-player, two-period example (n = 2, T = 2), with no
status quo payoffs (νt ≡ 0) and constant revolution payoffs in expectation (µ1 = µ2 = µ).
Regime change requires the participation of both citizens: f(1) = 1, f(0.5) = f(0) = 0.
There is a small amount of state uncertainty, and signals are very slightly noisy: σθ, σϵ are
small, with σθ >> σϵ > 0. We begin by characterizing the social planner’s solution.

Remark 1. If µ < c, then the social planner’s solution is full abstention with probability
going to 1 as σθ → 0. On the other hand, if µ > c, then it is socially optimal to have both
citizens protest in both periods with probability going to 1 as σθ → 0.

The result is intuitive: if θt < c, then protesting is socially wasteful. If θt > c, then
protesting generates a net payoff of θt− c > 0 per capita. Moreover, since µ1 = µ2 and σθ is
small, it is almost always better to protest in the first period than to delay until the second
period, as θ1 − c ≈ µ− c > δ(µ− c) ≈ δ(θ2 − c). The per capita payoff induced by the social
planner’s solution is thus approximately max(µ− c, 0), as illustrated in blue in Figure 1.

We now consider the noncooperative equilibrium of the game.

Remark 2. For σϵ small enough, there is a unique10 equilibrium in which each player i protests
at time t if and only if xit ≥ x∗t . As σθ → 0, the equilibrium outcome (with probability going

10There is also a non-participation equilibrium, but its existence is knife-edge: it disappears if we make
f(0.5) arbitrarily small but positive. We set f(0.5) = 0 to keep the algebra simple.
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to 1) is full abstention if µ < 2c; full protesting in both periods if µ > 2−δ
1−δc; and protesting

only in period 2 if 2c < µ < 2−δ
1−δc.

The existence of a unique equilibrium in threshold strategies is standard from global
games. To find the equilibrium thresholds, consider the problem faced by i in period 2 if
she sees a marginal signal xi2 = x∗2. When σϵ is very small, it is equally likely that the other
citizen has a higher signal than hers (xj2 > x∗2, hence j protests) or not (xj2 < x∗2, hence
j abstains), so i’s expected payoff from protesting is θ2

2
+ 0

2
− c ≈ x∗2

2
+ 0

2
− c, while her

abstention payoff is zero. Since i must be indifferent at the threshold, x∗2 ≈ 2c. Thus, in
period 2, the players obtain the socially optimal outcome only for µ > 2c, as illustrated in
orange in Figure 1.

Consider now period 1. If µ < 2c, the same logic from period 2 dictates that the players
abstain. If µ > 2c, a player i with marginal signal xi1 = x∗1 again believes that the other
player will protest only with probability 0.5. But now, the expected payoff from regime
survival is δ(µ − c) rather than 0, as the regime would most likely fall tomorrow. Then i’s
abstention payoff is δ(µ − c), while her protest payoff is θ1

2
+ δ(µ−c)

2
− c ≈ x∗1

2
+ δ(µ−c)

2
− c.

Since i must be indifferent at the threshold, x∗1 ≈ δ(µ− c) + 2c > 2c. For players to protest
in period 1 with high probability, their signals must exceed this threshold, i.e., we need
µ ≈ θ1 ≈ xi1 ≥ x∗1 ≈ δ(µ− c) + 2c, which implies µ ≥ 2−δ

1−δc.
To summarize, when regime change payoffs are very high (µ > 2−δ

1−δc), the social optimum
is still achieved. When they are moderate (c < µ < 2c), both citizens (inefficiently) stay
home, due to the familiar fear of miscoordination that arises even in the one-shot game when
signals are slightly noisy. But, in an intermediate region (2c < µ < 2−δ

1−δc), the citizens pass
in period 1 and attack in period 2.

This is collective procrastination. It reflects how an expected successful protest tomorrow
saps incentives to coordinate today. It is inefficient: as seen by comparing the green and
orange payoffs in Figure 1, the players are worse off than if protesting in period 2 were
impossible—as in that case they would coordinate on protesting today instead of tomorrow.

The appearance of collective procrastination hinges on the players’ mutual fear of mis-
coordination.11 Our insight is that this well-known source of inefficiencies in static global
games has compounding effects in a dynamic game.

11To see why, note that if the state were commonly known in each period (σϵ = 0), then it would be an
equilibrium for the players to follow the social planner’s optimal strategy, which features no procrastination.
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5 Analysis

We solve the general game by backward induction from the last period. Suppose the regime
has survived until the beginning of period T . What is left to play is a static coordination
game, which can be solved using familiar techniques from the global games literature.

Let ∆iT be i’s marginal payoff from attacking, given a signal observation xiT and the
other players’ equilibrium strategies:

∆iT = −c+ E

[
(θT − νT )

(
f

(
l̃T +

1

n

)
− f(l̃T )

)
| xiT

]
, (1)

where c is the cost of protesting, n is population size, θT and νT are payoffs from regime
change and status quo in period T respectively, f(l) is the probability of regime change
when fraction l of citizens attack, and l̃T ≡ 1

n

∑
j ̸=i ajT is the fraction of the population

who attacks, assuming i abstains. In equilibrium, i must attack if ∆iT > 0 and abstain if
∆iT < 0. Our first result characterizes the agents’ equilibrium behavior in the last period.

Lemma 1. Assume σϵ > 0 is small enough. Then the period-T subgame has a unique
equilibrium. In this equilibrium, each player i attacks if and only if xiT is weakly greater
than a threshold x∗T (σϵ). As σϵ → 0, x∗T (σϵ) converges to a limit x∗T , which equals

x∗T =
cn

f(1)− f(0)
+ νT .

Some properties of the equilibrium threshold are intuitive: higher costs of protesting c

and better status quo payoffs νT both drive x∗T up, discouraging protesting. On the other
hand, x∗T is decreasing in f(1)−f(0)

n
, which is a measure of the citizen’s “agency,” i.e., the

likelihood that her participation will be decisive.
That the unique equilibrium is in threshold strategies follows from familiar arguments

for global games. Here is an intuitive derivation of the threshold x∗T . A citizen i whose signal
xiT equals x∗T must be indifferent, i.e., ∆iT (x

∗
T ) = 0. When σϵ is small, xiT is a precise signal

of the state, so i believes that θT is close to x∗T . On the other hand, as typically happens
in global games, i’s signal says very little about where it ranks relative to other citizens’
signals; indeed, i expects that the fraction of citizens with higher signals than her own is
approximately equally likely to be 0, 1

n−1
, . . . , n−2

n−1
, or 1.12 Because it is precisely those

citizens who will attack, l̃T |xiT = x∗T may equal 0, 1
n
, . . . , or n−1

n
, each with probability

12This is a discrete version of the well-known result that, in global games with an infinite population, the
fraction of agents with signals higher than one’s own is uniformly distributed between 0 and 1 (Morris and
Shin, 2003).
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approximately equal to 1
n
. Substituting all this into Equation (1),

∆iT (x
∗
T ) ≈ −c+ (x∗T − νT )

n−1∑
j=0

f
(
j+1
n

)
− f

(
j
n

)
n

= −c+ (x∗T − νT )
f(1)− f(0)

n
.

Setting this expression equal to zero yields the limit threshold from Lemma 1.
Our next observation is that game in all periods can be solved using exactly the same

approach, with one difference. Let U t+1(σϵ, σθ) denote each citizen’s continuation payoffs at
the beginning of period t+1, assuming the regime has survived until then. Then i’s marginal
utility from attacking in period t is

∆it = −c+ E

[(
θt − νt − δU t+1(σϵ, σθ)

)(
f

(
l̃T +

1

n

)
− f(l̃T )

)
| xit

]
, (2)

because regime change attains the payoff θt but forgoes both the current status quo payoff νt
and the continuation payoff δU t+1(σϵ, σθ)—which, in turn, captures future payoffs from both
protests and the status quo. Our next result traces out the consequences of this observation.

Proposition 1. For σϵ small enough, the game has a unique equilibrium. In it, each citizen
i attacks in period t if and only if xit is weakly greater than a threshold x∗t (σϵ, σθ).

As σϵ → 0, we have x∗t (σϵ, σθ) → x∗t (σθ) and U t+1(σϵ, σθ) → U t+1(σθ). And as σθ → 0,
x∗t (σθ) → x∗t , U t+1(σθ) → U t+1. The sequence of limit thresholds x∗1, . . . , x∗T and continuation
utilities U1, . . . , UT ) is found by recursively solving the following system of equations for
t = T , T − 1, . . . , 1:

x∗t =
cn

f(1)− f(0)
+ νt + δU t+1; (3)

U t =

−c+ f(1)µt + (1− f(1))
(
νt + δU t+1

)
if µt > x∗t

f(0)µt + (1− f(0))
(
νt + δU t+1

)
if µt < x∗t ,

(4)

taking UT+1 = 0.

Per Equation (3) the equilibrium threshold in all periods is as in Lemma 1, but now
accounting for the continuation value δU t+1 of preserving the status quo. Note that, when
σϵ and σθ are both low, xit is close to µt for most citizens. Then, in periods where µt > x∗t ,
a mass protest takes place (lt ≈ 1) and the regime falls with probability close to f(1). On
the contrary, when µt < x∗t , almost nobody protests, and the regime falls with probability
close to f(0). This observation underpins Equation (4). Equation (3) then reveals that mass
protests occur precisely in periods where µt − νt >

cn
f(1)−f(0) + δU t+1. Thus a high potential
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gain from regime change, θt−νt ≈ µt−νt, encourages protests, but so does a low continuation
value δU t+1.

In fact, protests are always welfare-improving in equilibrium: whenever µt > x∗t , the net
payoff of a mass protest, −c + [f(1) − f(0)](µt − νt − δU t+1) (per Equation (4)) is at least
−c + cn > 0. Then the expectation that citizens will coordinate on a protest in period
t + 1 discourages protests in t by increasing δU t+1, while the expectation that citizens will
coordinate on abstention tomorrow spurs protests today. This leads to cycles of protest.

To illustrate, consider the example shown in Figure 2, where n = 10, T = 6, f(l) = l+l2

4
,

c = 0.1, δ = 0.8, and σϵ, σθ are both small, with σϵ << σθ. We assume µt = 3 and νt = 0 for
all t: regime change and status quo payoffs are constant. Then there should be no reason to
wait for a “better” moment (i.e., higher θt) to attack; attacks ought to make sense in every
period, or never. Yet, in equilibrium, the citizens condition their actions today on expected
future attacks, leading to cycles. Indeed, in period 6, µ − ν = 3 > 2 = 0.1×10

[0.5−0]
= cn

f(1)−f(0) ,
so there is a protest. But as a result, the continuation value in period 5, δU6, equals
0.8(−0.1 + 0.5 × 3) = 1.12, a value high enough that it tempts the citizens to abstain in
period 5, as cn

f(1)−f(0)+δU6 = 3.12 > 3. In period 4, citizens are more impatient because they
would have to wait two full periods for the next protest: δ2U6 = δU5 = 0.8× 1.12 = 0.896,
so cn

f(1)−f(0) + δU5 = 2.896 < 3, so a protest occurs. By similar logic, the citizens abstain
in periods 2 and 3, and protest in period 1, having a 50% chance of success (f(1) = 0.5)
with each attack.13 In every period of abstention—t = 2, 3 and 5—the citizens fall victim
to collective procrastination.

Just as in our two-period example from Section 4, having additional opportunities to
protest can be harmful. For example, conditional on reaching period 5, the citizens’ equilib-
rium utility is 1.12, but it would be 1.4 if protesting in period 6 were impossible, because they
would then coordinate on attacking in period 5. More generally, changes to the environment
which slightly increase the agents’ payoffs given any strategy profile—but discourage them
from protesting—may leave them worse off in equilibrium.

Because the expectation of an imminent attack discourages attacking today, it is generally
true that, if the profitability of attacks is in an intermediate region, attacks arrive in waves
separated by periods of apparent calm, even if the underlying fundamentals—the level of
discontent, the state of the economy, and so on—remain stable. The following proposition
formalizes this argument.

Proposition 2. Suppose the status quo payoff νt equals ν for all periods t < T , with νT =

13Note that, because σθ is small, citizens effectively know when they will next coordinate on a protest.
When σθ is substantial, a similar logic holds in fuzzier form.
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tT = 654321
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µ∗

x∗
t

δU t+1

Regime change
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Protesting threshold: x∗
t

Continuation value: δU t+1

Protests: x∗
t < µ

Figure 2: Pattern of attacks when the regime change payoff is intermediate: µt ≡ µ between
µ∗ and µ∗

ν
1−δ .

14 Then there are thresholds µ0 ≤ µ∗ < µ∗ such that, for σϵ << σθ small enough:

(i) If µt = µ > µ∗ for all t, then, in every period, expected protest participation is close to
100%.

(ii) If µt = µ < µ0 for all t, then, in every period, expected participation is close to 0%.

(iii) Generically,15 if there is η > 0 for which µt ∈ (µ∗ + η, µ∗ − η) for all t, there are
protest cycles: for T large enough, there are arbitrarily many periods with expected
participation close to 100%, and arbitrarily many with expected participation close to
0%.

Moreover

µ0 =
cn

f(1)− f(0)
+

ν

1− δ
,

µ∗ =
cn

f(1)− f(0)
+

δc

1− δ

nf(0)

f(1)− f(0)
+

ν

1− δ
,

µ∗ =
cn

f(1)− f(0)
+

δc

1− δ

[
nf(0)

f(1)− f(0)
+ n− 1

]
+

ν

1− δ
.

An important implication of Proposition 2 is that, as δ → 1, µ∗ − ν
1−δ grows without

bound. This means that, if citizens are very patient, cycles of protest are almost inevitable:
14This amounts to assuming status quo payoffs of size ν for period T and all periods thereafter (see

Footnote 5), which keeps continuation values constant over time in case of no attacks.
15The statement is true except for a set of sequences (µt)t of Lebesgue measure zero.
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protesting in every period becomes impossible unless the payoff to protesting is extremely
high (µt > µ∗).

Finally, Proposition 3 partially characterizes the model’s comparative statics. It shows
the effects of a marginal change in the parameters—in particular, µt′ or νt′—on the incentive
to attack in any period t ≤ t′, measured by changes in the equilibrium thresholds x∗t .

Proposition 3. Consider the generic case in which µt ̸= x∗t for all t. Assume 0 < f(0) <

f(1) < 1. Then:

(i) A marginal increase in the current or future status quo payoff increases the current
threshold for attack: ∂x∗t

∂νt′
> 0 for all t′ ≥ t.

(ii) A marginal increase in the payoff of future regime change increases the current thresh-
old for attack, but a change in the payoff of current regime change does not affect it:
∂x∗t
∂µt′

> 0 for all t′ > t but ∂x∗t
∂µt

= 0.

Explicit formulas for the derivatives ∂x∗t
νt′

, ∂x∗t
µt′

are given in the Appendix. The intuition
behind the result is as follows: when the status quo payoff, νt′ , or the regime change payoff,
µt′ , increases in a future period t′ > t, it becomes preferable to let the regime survive at time
t, for a chance to receive this increased payoff at time t′. The incentive to attack in period t
decreases, and x∗t increases. Similarly, if νt increases, the players are incentivized to let the
regime survive today. On the other hand, an increase in µt has no effect on x∗t—but makes
players more likely to attack at time t, since it increases θt, and thus the players’ signals
xit. The general message is that an attractive status quo always deters attacks, while an
attractive regime change payoff today encourages attacks now while discouraging attacks in
previous periods.

When information is precise, Proposition 3 characterizes only latent changes in the will-
ingness to attack: for example, if µt < x∗t , then there will be no attack at time t, a conclusion
left unaffected by any marginal parameter change. If a parameter changes enough, collec-
tive behavior eventually changes discontinuously, and perhaps simultaneously in multiple
periods. For instance, as νt′ increases, all the thresholds x∗t for t < t′ smoothly increase,
until one of them crosses µt from below. At that point, the agents would suddenly switch
from attacking in period t to abstaining, and this expectation may in turn galvanize them
to attack in an earlier period, etc.

We finish our analysis with a comparison of the equilibrium with the social planner’s
solution. We show that, in contrast to equilibrium behavior, the social planner only delays
protests if justified by fundamentals (e.g., µt increasing in t).
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Remark 3. In the welfare-maximizing strategy profile, each citizen i attacks in period t if xit
is higher than a threshold, which for σϵ small enough converges to

xsp
t =

c

[f(1)− f(0)]
+ νt + δU

sp
t+1, (5)

and abstains otherwise. Moreover,

(i) Citizens’ payoffs weakly increase if µt or νt increase for any t.

(ii) If regime change and status quo payoffs are constant (µt ≡ µ; νt ≡ ν for all t < T and
νT = ν

1−δ ; σθ and σϵ small), and the regime never falls without a protest (f(0) = 0),
then either there is an attack in every period (if µ > c

[f(1)−f(0)] +
ν

1−δ ) or there are no
attacks (<).

Per Equation (5), the social planner uses the same threshold for action as is used in the
equilibrium of our main model (cf. Equation (3)) if there were a single citizen (n = 1).
Part (i) of Remark 3 implies that, in the social planner’s solution, there is no inefficient
procrastination: a higher continuation payoff is always weakly beneficial, as the social planner
chooses to wait only when waiting is the best option. Part (ii) reveals that there are no
spurious cycles: if fundamentals are stable, then the social planner has the citizens always
attack or never attack.

The gap between the social planner’s solution and the noncooperative equilibrium (com-
pare Equations (3) and (5)) stems from two distinct forces: fears of miscoordination and
free riding. That free riding might play a role is not surprising, since each citizen does not
internalize the benefits her participation bestows on other citizens. But free riding is not
always the main culprit. To see why, recall our two-player example from Section 4, in which
f(1) = 1 and f(0.5) = f(0) = 0. There, if there is full information (σϵ = 0), the social
planner’s solution is also a noncooperative equilibrium. Indeed, since full participation is
required to win (f(0.5) = 0), free riding is impossible: a citizen cannot gain from abandoning
her partner when both are supposed to protest. Thus, the source of equilibrium inefficiency
when σϵ > 0 is solely that each citizen cannot know for sure if her partner will join her.

More generally, the degree of collective action and resulting inefficiency in i) the social
planner’s solution, ii) the equilibrium under full information, and iii) the equilibrium with
noisy information stem from the players’ effective agency in each case, which compare as
follows:

f(1)− f(0)︸ ︷︷ ︸
social planner’s agency

≥ f(1)− f

(
n− 1

n

)
︸ ︷︷ ︸

citizen’s agency, full information

≥ f(1)− f(0)

n︸ ︷︷ ︸
citizen’s agency, noisy information

(6)

15



Indeed, the planner can shift participation from 0 to 1 if she chooses. Each citizen can
only shift it by 1

n
. But, under full information, a marginal citizen can know that others

are participating, so she effectively chooses between lt =
n−1
n

and lt = 1, while under noisy
signals the marginal citizen is much more uncertain about others’ behavior.

When f is very convex, so that f
(
n−1
n

)
is close to f(0), the citizens can do as well as

the planner under full information, so that fears of miscoordination under noisy information
are the main source of equilibrium inefficiency. On the contrary, if f is close to linear, then
f(1)− f

(
n−1
n

)
is close to f(1)−f(0)

n
, and most inefficiency is caused by free riding. Intuitively,

when f is linear, there is no coordination motive; on the contrary, the temptation to let the
other citizens “handle the problem” is high.

6 Extensions

This Section presents three extensions. The first shows that, if the citizens are even slightly
altruistic towards each other, then the incentive to engage in “pivotal protesting” remains
large for any population size. The second shows that our qualitative results continue to hold
if private benefits (i.e., “club goods”) are available in addition to public ones. The third
adds to the model a notion of changes in expectations, and shows how the citizens’ protest
behavior today responds to new information about the future. Finally, in the Appendix, we
cover an alternative setting where, unlike in our main model, there is no hope of overthrowing
the regime, but protests serve to keep a resistance alive and stave off permanent repression.

6.1 Altruism and Agency

As can be seen from Equation (3), the equilibrium thresholds x∗t increase without bound as
n → ∞. Thus, holding all other parameters constant, protesting becomes impossible if the
population is large enough. This result reflects the well-known insight that collective action
in large populations is undone by free riding if all benefits are public (Olson, 1965).

In light of this, can pivotal protesting truly serve as a model of mass protests? We
argue that it can, if the citizens in question exhibit even slight other-regarding, or altruistic,
preferences towards their fellow citizens. Formally, suppose that each citizen i’s objective
function Vit at time t puts a weight 1 on her “hedonic” utility and a weight α ∈ [0, 1]

on the hedonic utility of each other citizen. That is, Vit = Uit + α
∑

j ̸=i Ujt, where Ujt =∑
t≤τ≤T δ

τ−tuiτ is j’s continuation hedonic utility from t onwards, as defined in Section 3.
This model coincides with our baseline model when α = 0. In contrast, if α = 1,

each citizen would behave as a social planner, putting equal weight on each player’s welfare
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(including her own). For general α, i’s marginal payoff from attacking becomes

∆it = −c+ [1 + α(n− 1)]E

[(
θt − νt − δU t+1(σϵ, σθ)

)(
f

(
l̃T +

1

n

)
− f(l̃T )

)
| xit

]
, (7)

because whenever her participation changes the outcome, she (weight 1) as well as n − 1

others (weight α on each) receive the windfall θt − νt − δU t+1(σϵ, σθ) (cf. Equation 2). The
citizen’s effective agency is then [1 + α(n− 1)]f(1)−f(0)

n
(cf. Equation 6), which converges to

α[f(1) − f(0)], rather than to 0, for large n. The equilibrium threshold from Equation (3)
becomes

x∗t =
n

1 + α(n− 1)

c

f(1)− f(0)
+ νt + δU t+1. (8)

Proposition 3 extends for all α < 1—in particular, there are thresholds µ∗(α) < µ∗(α) such
that there is procrastination and cycles when µt lies between them.16 At the same time,
as n → ∞, the equilibrium thresholds x∗t now converge not to infinity but to c

α[f(1)−f(0)] +

νt + δU t+1, which is finite for any α > 0. In other words, for any α ∈ (0, 1), incentives to
engage in pivotal protesting remain relevant in large populations and entail the same general
consequences that we have characterized in the baseline model.

Other-regarding preferences have previously been proposed as a solution to the turnout
paradox (Feddersen, 2004; Blais, 2000), i.e., an explanation for why rational, selfish voters
would vote in large elections where pivotality is unlikely (Edlin, Gelman and Kaplan, 2007;
Jankowski, 2007; Fowler, 2006; Myatt, 2015).17 They have been less explored in formal
models of protest.18 But protesting, like voting, is a form of civic expression, and arguably
the closest substitute available in non-democratic societies, so protest participation could
plausibly be driven by similar motives.

It is worth noting that the formal literature on protests broadly considers two types
of potential motivations for citizens to act: private benefits (Olson, 1965; Tullock, 1971),
that is, material or social benefits of regime change that are exclusive to participants; and
psychological rewards, such as frustration in response to relative deprivation (Gurr, 1970)
and “pleasure in agency” (Wood, 2003).19 But typically, most participants in mass protests
do not receive (or expect) material rewards. If a notion of social or psychological benefits is

16This is shown formally in the proof of Proposition 3. In the extreme case α = 1, the equilibrium must
replicate the social planner’s solution, so procrastination disappears.

17Models of “ethical voting” (Coate and Conlin, 2004; Feddersen and Sandroni, 2006) are also closely
related.

18The exception is Shadmehr (2021), which considers protests by altruistic citizens, albeit only in a static
model.

19See Lichbach (1995) for a broad survey of protester motivations.
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required to explain participation, then other-regarding preferences are in principle no more
or less plausible than the usual operationalization of psychological rewards as expressive
“warm glow” payoffs (Persson and Tabellini, 2009; Little et al., 2015; Egorov and Sonin,
2021).

6.2 News Shocks

Mass protests often respond to events that shift expectations about the future, even ones
that leave current material conditions unaffected. Examples include public announcements,
proposed bills and agreements, and political developments abroad.20 As our examples in the
Introduction and Section 7 show, this is an empirically common and important phenomenon.
Unlike other dynamic models of mass protest,21 our model can provide a natural explanation
for it, if augmented to allow for “news shocks”.

In our baseline model, µt and νt are commonly known parameters. We can instead
assume that, for each t, µt and νt are distributed according to some cumulative distribution
functions Ft, Gt, with their realized values being fully revealed by the beginning of period
t—but this information can arrive as a lump sum at time t, or in a previous period, or
gradually over many periods, with all such signals being revealed publicly to all citizens.
Because this uncertainty is resolved by time t, it makes no difference when characterizing
the citizens’ equilibrium strategies at time t. The only change to our analysis is that we must
write a more complicated version of Equation (4), as the expected continuation value U t+1

would now average over the possible values of µt+1, νt+1, the players’ equilibrium actions
as a function of these parameters, and the next period’s continuation value, U t+2. Any
information received at time t about µτ or ντ (for τ > t) would constitute a “news shock”.

For brevity, we illustrate the impact of news shocks in an example. Let f(l) = 2l+l2

8
,

c = 1, δ = 0.8, and n = 10. Assume that µt ≡ 0, but νt depends on the state of the society,
which may be green, yellow, or red. We can think of these as different stages of democratic
backsliding, where green corresponds to the status quo, yellow to the introduction of bills
that will entrench the incumbent in power, and red to after the bill has been ratified. While
the state is green or yellow, νt = 0, whereas νt = ν < 0 in the red state. If the state is green
at time t, then, at time t + 1, it will still be green with probability 0.98; with probability
0.02, it will turn yellow. If the state turns yellow in period t, it remains in this state for three
periods (t, t+ 1, t+ 2) and then becomes red forever. As the yellow state is not materially

20Consider, for instance, the forward thinking encapsulated in the chilling slogan used by Taiwanese
protesters: “Today’s Hong Kong, tomorrow’s Taiwan.” https://foreignpolicy.com/2014/08/19/todays-
hong-kong-tomorrows-taiwan/

21For instance, in Angeletos et al. (2007) or Little (2017), equilibrium behavior is always independent of
all expectations about the future, even if the citizens are forward-looking.
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worse than the green one, a switch to the yellow state is a pure news shock.
Denote the moment the state turns yellow by t0. Using Equations (3) and (4), we can

show that citizens attack in every red period (from t0 + 3 onwards) if ν < −12.533. If
ν < −25.067, citizens also attack in the last yellow period, t0 + 2. If ν < −50.133, they also
attack in period t0 + 1 And, if ν < −100.27, they also attack in period t0, as soon as the
state becomes yellow. They thus become more prone to protesting the more imminent the
red state is. On the other hand, they will not attack in the green state so long as ν > −1830,
because a switch to the yellow state is not particularly likely. In particular, for ν between
−1830 and −101, the citizens are peaceful in the green state, but react to news shocks: they
begin protesting as soon as the yellow state is realized, even though their current payoffs are
unchanged.

6.3 Private and Public Benefits

For simplicity, in our main model there are only public benefits from protesting: any payoff
from regime change benefits all citizens. We can instead allow for the coexistence of public
and private benefits that are only obtained by participants in a successful attack. Suppose
that a fraction ρ of regime change benefits are private: if the regime falls at time t protesters
receive θt and abstainers receive only (1 − ρ)θt. (ρ ∈ [0, 1] is commonly known.) Then i’s
marginal payoff from protesting at time t becomes

∆it = −c+ E

[
((1− ρ)θt − νt − δU t+1)

(
f

(
l̃t +

1

n

)
− f

(
l̃t

))
+ ρθtf

(
l̃t +

1

n

)
| xit

]
,

where ρθt, i’s private benefit, is received with probability f
(
l̃t +

1
n

)
if she participates and

0 otherwise, while the additional probability of receiving the net public benefit, (1− ρ)θt −
νt− δU t+1, is i’s probability of being pivotal, as before. Under the assumptions made in the
main model, the game remains one of strategic complements, so the citizens attack when xit
is above a threshold, which now converges for small σϵ to

x∗t =
c+ f(1)−f(0)

n
(νt + δU t+1)

(1− ρ)f(1)−f(0)
n

+ ρ
∑n

j=1 f(
j
n)

n

. (9)

A derivation of Equation (9) can be found in the Appendix. Note that, when ρ = 0, this
simplifies to Equation (3).

From Equation (9) it follows that, even when there are private benefits (ρ > 0), or even
if all benefits are private (ρ = 1), pivotality concerns are active: continuation values matter
in the citizens’ strategic calculus (i.e., x∗t increases in δU t+1), and similar arguments as in
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our main model show that protest cycles can still result for any finite n.
However, the higher n is, the closer this model becomes to canonical models of protest

(Morris and Shin, 2003; Angeletos et al., 2007; Little, 2017), in which the population is
infinite and private benefits are the only driver of behavior. Indeed, setting ρ > 0 and taking
n→ ∞, Equation (9) becomes

x∗t =
c

ρ
∫ 1

0
f(l)dl

. (10)

The continuation utility, U t+1, vanishes from the expression: when agents expect to never be
pivotal, their behavior becomes as if myopic, even when they are forward-looking, because
the value of continuing the game matters in their strategic calculus only insofar as their
participation might affect the probability of regime change, which it cannot.

In contrast to the tendency of agency-driven protesters to delay collective action, protesters
who are solely (or mostly) motivated by excludable benefits may be inefficiently slow or quick
to act, precisely because they disregard the future in their calculations. They might prema-
turely “jump the gun” amid improving conditions (µt, νt increasing), and conversely may fail
to react to an approaching catastrophe (µt, νt sharply decreasing) if current regime change
payoffs are not tempting enough. Moreover, their behavior would not give rise to protest
cycles: the threshold in Equation (10) is constant over time, so if µt is constant, there will
be attacks in all periods (if µt > x∗t ) or none (<).22

7 Discussion

Our model generates several empirical predictions that do not naturally follow from existing
formal models of protests. First, public benefits can drive protest behavior, whether private
benefits are present or not. Second, cycles of protest can arise even when the underlying
grievances are long-standing, with little meaningful change over time. In such instances,
periods of delay between protests reflect collective procrastination, as it would be socially
preferable to protest in all periods. And third, “news shocks” can be impactful: for instance,
threatening bills can cause protests, while a promise to hold elections can defuse them.

We now discuss some examples as suggestive evidence of these phenomena at work. That
public benefits can drive protest behavior—in particular, that dissatisfaction with the status

22Dynamic models of protests with private benefits (Angeletos et al., 2007; Little, 2017) find that intermit-
tent attacks are possible if the state is hidden and persistent (i.e., θ is drawn only once and remains fixed);
the agents keep receiving exogenous signals of it; and these signals happen to periodically compensate for
the “bad news” that regime survival itself implies. But other outcomes are also possible, such as equilibria in
which the citizens give up after a single failed attack. In contrast, in our model, protest cycles are a robust
phenomenon.
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quo precedes protest movements—is an empirical regularity, satisfied by all of the examples
we mention. As discussed in the Introduction, the Chilean protests in 2006, 2008, 2011,
and 2019 also display an apparent pattern of protest cycles. Minor events, such as a 4%
hike in metro fares in 2019, served as the proximate cause of each outbreak. Yet the roots
of discontent lay in issues such as economic inequality, insufficient public education, and
perceived disenfranchisement, which had been fixtures of the Chilean landscape since the
Pinochet dictatorship (Borzutzky and Perry, 2021). Similarly, the 2013 protests in Brazil
were triggered by public transportation fare hikes, but responded more broadly to perennial
issues such as the “state of public infrastructure . . . public spending . . . corruption, urban
violence, and a ‘fed-up-ness’ with the state of the country” (Alonso and Mische, 2017),
which had also triggered previous protests (Alonso and Mische, 2017, p. 152).23 It has
been argued more generally that contentious movements are inherently cyclical in nature
(Tarrow, 2011; Hirschman, 1982). The existing literature proposes various explanations for
such waves or cycles, such as cycles of disappointment that shift citizens’ focus back and
forth between private consumption and public action (Hirschman, 1982), and protest fatigue
and responses by the regime (Tarrow, 2011). Our model shows that even in the absence
of any such phenomena, the dynamic discouragement effects we characterize induce cycles
in agency-driven protesting. Another alternative explanation for delays in collective action,
based on preference falsification (Kuran, 1989), seems less appropriate for examples such
as Chile or Brazil, where severe restrictions on speech were not present and past protests,
elections, etc., provided plenty of information about public sentiment.

Though our model suggests that collective action will coalesce into cyclical outbreaks
even absent obvious triggers, it also predicts that significant exogenous shifts in threats and
opportunities (Tilly, 1978) will give shape to these cycles when present (see also Hirschman
(1982) (pp. 4-6) on this point). A specific prediction that is novel to our model in the formal
literature is that even pure “news shocks” that only concern the future can have such effects.

Examples show that both negative and positive news shocks can be impactful. For
example, the 2019 proposal of a bill in Hong Kong that would have allowed extraditions to
mainland China prompted marches numbering over a million protesters, which ultimately
challenged not just the proposed bill but also the legitimacy of Hong Kong’s government and
police force. The protests boiled over even before the bill was to be formally discussed in
the legislature (Purbrick, 2019), and continued even after the bill was shelved,24 ending only
after mainland China directly imposed a national security law that criminalized dissent.25

23See also Koopmans (1993) for a discussion of protest cycles in Western Europe during the Cold War.
24https://www.nytimes.com/2019/06/16/world/asia/hong-kong-protests.html
25https://www.nytimes.com/2021/01/05/world/asia/hong-kong-arrests-national-security-

law.html
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Clearly, the protesters reacted before the bill could have had any material consequences; the
driver for action was instead what the proposal signaled about Hong Kong’s political future.
Similarly, an earlier wave of protest in 2003 followed a proposed national security bill, while
the 2014 Umbrella Revolution condemned a proposal to implement democratic elections but
only between candidates selected by a pro-Beijing committee. These explosions of dissent
punctuated a rising collective unease with the mainland’s attempts to encroach on Hong
Kong’s autonomy, described as “the political ground simultaneously shifting and shrinking
beneath their feet.”26 That the protesters’ most forceful bid for change only took place in
2019–2020 is arguably a sign of collective procrastination: as the mainland’s resolve to bring
Hong Kong under its heel had come to harden throughout the 2010s, decisive action might
have been more effective had it come earlier.

The 2014 Euromaidan revolution in Ukraine was also triggered by a negative news shock.
After years of negotiations with the European Union and promises of European integration,
the Yanukovych administration announced in November 2013 that it was suspending plans
to sign a broad association agreement with the EU, only a week before the scheduled signing.
Instead, Ukraine would seek closer ties with Russia, which had threatened trade sanctions
in response to the EU deal. Protesters gathered, spurred by the threat that their chance to
finally escape the Russian sphere of influence—to no longer live in “a post-Soviet barrack
temporarily repainted in yellow and blue”—would evaporate.27 Ukraine failed to sign the EU
agreement as scheduled, even as both sides claimed that a deal was still on the table.28 The
protests grew in number and scope of demands, and turned into riots even as the government
responded with a package of draconian anti-protest laws,29 and violent crackdowns that killed
over 100 protesters in total. Soon, widespread desertion among demoralized police forces
forced Yanukovych to flee to Russia.30 In the Ukrainian case, too, the sources of resentment—
poverty, corruption, and low democratic legitimacy—had plagued the country for years, ever
since its transition out of communism. But the prospect of European integration had offered
hope that the status quo would improve, helping to stave off collective action until the
breakdown in negotiations.

The same forces explain why protest movements sometimes stagnate in anticipation of
26https://time.com/5786776/hong-kong-joshua-wong-future-homeland/
27https://www.nytimes.com/2013/11/27/world/europe/protests-continue-as-ukraine-leader-

defends-stance-on-europe.html
28https://www.reuters.com/article/us-ukraine-eu/eu-says-door-remains-open-to-ukraine-

as-unity-cracks-idUSBRE9BE05120131216
29https://www.washingtonpost.com/world/in-ukraine-protesters-appear-to-be-preparing-

for-battle/2014/01/20/904cdc72-81bd-11e3-9dd4-e7278db80d86_story.html
30https://www.nytimes.com/2014/02/24/world/europe/as-his-fortunes-fell-in-ukraine-a-

president-clung-to-illusions.html?_r=1
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elections: elections hollow out the incentive to protest by offering a less costly avenue for
change (Hafner-Burton, Hyde and Jablonski, 2018). In particular, then, a surprise call for
new elections can serve as a positive news shock that defuses collective action. Indeed,
Marsteintredet and Berntzen (2008) argue that calls for early elections were successfully
used as a “last resort to solve an ongoing political conflict”, e.g., in Bolivia (1995) or the
Dominican Republic (1996).

Conversely, a controversial incumbent’s reelection is often succeeded by anti-regime protests.
This is consistent with the logic of collective procrastination: citizens who were hoping for
change at the ballot box may finally coordinate on protesting if, after the election, they
perceive the next opportunity to attain change peacefully as too remote. The widespread
protests following Orban’s reelections in 2018 and 2022—which stood in stark contrast with
the relative tranquility in the streets leading up to the elections—can be seen in this light.31

Another example is the 2017 Women’s March in the United States, held the day after Donald
Trump’s inauguration. In reverse fashion, the repeated postponement of elections in Bolivia
in 2020 sparked widespread protests.32

8 Conclusions

In this paper we develop a dynamic model of protests in which citizens act driven by the
desire to bring about change, even if the benefits from regime change accrue even to non-
participants. We show that, in a dynamic context, the willingness to engage in “pivotal
protesting” responds not just to contemporaneous benefits and costs, but also to the future
ramifications of regime change or its absence. Because an expectation of future collective
action makes present collective action less urgent, and vice versa, spikes in social turmoil are
self-limiting and may arrive in waves, even if the underlying material and social conditions are
stable over time. When such protest cycles occur, the citizens would be better off protesting
in all periods, but are tempted to drag their feet in between periods of expected coordination.

The dynamic encouragement and discouragement effects that are central to our analysis
are absent from models of repeated protests driven by private benefits. Within our theory,
they are the source of predictions that find support in the substantive literature on mass
protests and are empirically plausible, yet are novel to the formal literature on the topic.

The model is flexible and allows many extensions besides the ones covered in the paper.
One salient question concerns government manipulation: if indeed collective action is vul-
nerable to a form of collective “limited willpower,” how would a government shape payoffs or

31https://www.nytimes.com/2018/04/14/world/europe/hungary-protest-orban.html
32https://www.nytimes.com/2020/08/07/world/americas/bolivia-roadblock-blockade.html

23



beliefs over time to defuse protests? For example, the government may increase clientelistic
transfers when the threat of revolt spikes. Likewise, promises to hold new elections as an
alternative to immediate resignation, discussed in the previous section, ought in fact to be
modeled as news shocks that are not exogenous, but follow from a strategic choice by the
regime.

A more challenging direction is to enrich the informational environment. For instance,
the government may have private information about its strength or willingness to repress
dissent, while citizens may have private information about their level of discontent. Signal-
ing concerns would then arise: citizens may mobilize to communicate, rather than just to
overthrow the government, and the government may repress to show strength or resolve.
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A.1 Proof of Remark 1

By Remark 3, the social planner has each player attack in period 2 if xi2 > c
1−0

= c for σϵ
small. If µ > c, then this holds almost surely for σθ, σϵ small. If µ < c, then this fails to
hold almost surely for σθ, σϵ small.

In period 1, the social planner’s limit threshold is xsp1 = c+ δmax(µ− c, 0), so we again
have x1t > xsp1 almost surely if µ > c and vice versa if µ < c.

□

A.2 Proof of Remark 2

By Proposition 1, the limit threshold x∗2 equals c×2
1−0

= 2c. The limit period 2 utility is then
U2 = (µ − c)1µ>c. The limit threshold in period 1, x∗1, is then c×2

1−0
+ δ(µ − c)1µ>c. So we

have a likely attack in period 1 (µ1 > x∗1) if µ > 2c+ δ(µ− c)1µ>c, or µ > 2−δ
1−δc.

□

A.3 Proof of Lemma 1

The general strategy of the proof follows four steps:

(i) Show that the game is supermodular in actions, that is, if others’ strategies increase in
the sense of attacking at more signal realizations, then any player’s incentive to attack
also increases.

(ii) Show that the best response to a symmetric threshold strategy profile is a threshold
strategy. Using standard arguments from the supermodular games literature, conclude
that the game has extremal equilibria in symmetric threshold strategies.

(iii) Show that the game has a unique equilibrium in symmetric threshold strategies, hence
a unique equilibrium.

(iv) Characterize the equilibrium threshold, in particular as σϵ → 0.

The proof follows standard approaches for global and, more generally, supermodular
games. There are three complications, however, that make the proof less than standard.
First, the game is not supermodular in the traditional sense; we show instead that a closely
related game (with the same set of equilibria) is supermodular.33 Second, for the purpose of
proving Proposition 1, we need a stronger result than stated in this Lemma: not only do we

33Lemma 2.3 in Morris and Shin (2003) deals with a similar failure of supermodularity, but their result
assumes a uniform prior and does not rule out equilibria that are not in threshold strategies.
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need to show the existence of a threshold σϵ > 0 such that if σϵ < σϵ then the equilibrium
is unique (and in threshold strategies), but we also need σϵ to be uniformly bounded away
from zero as parameters vary (in particular as νT varies), because the game in periods t < T

has an a priori uncertain continuation value νt + δU t+1 that is itself a function of σϵ. Third,
as we work with a finite number of players, aggregate outcomes are random even conditional
on the realized state θt.

We write the proofs of our main results to cover the baseline model as well as the case
of altruistic citizens, letting α̃ = 1+(n−1)α

n
and f̃(l) := n

[
f
(
l + 1

n

)
− f (l)

]
.

(i) Supermodularity. Formally, denote j’s strategy in period T by AjT , the set of realiza-
tions of xjT for which j attacks. Let (AjT )j∈N , (ÃjT )j∈N be two strategy profiles such that
AjT ⊆ ÃjT for all j. The standard approach would be to show that ∆iT (xiT ) ≤ ∆̃iT (xiT ) for
all i, xiT , where ∆it(xiT ) is as defined in Equation (1) and ∆̃iT (xiT ) is the analogous object
when other players instead use the strategy ÃT . However, this inequality does not necessarily
hold: if AT and ÃT differ only in that agents attack more under ÃT when their signal real-
izations are very low, then an agent who expects others to play according to ÃT may be less
willing to attack, because she is afraid that f ′(lT )—hence the effect of her participation—will
be higher precisely when θT − νT is negative, a case in which she would prefer not to topple
the regime.

We then need a more careful argument. We argue that (a) agents never want to attack
when their signals are low enough, no matter what others will do, and (b) when restricting
attention to strategies that respect this constraint, supermodularity does hold.

Remark 4. (DeGroot, 1970, Theorem 9.5.1) θT |xiT ∼ N
(
σ2
ϵµT+σ2

θxiT
σ2
θ+σ

2
ϵ

,
σ2
θσ

2
ϵ

σ2
θ+σ

2
ϵ

)
.

Remark 5. Let X ∼ N(µ, σ2). Then E(X|X > a) ≤ max
(
a+

√
2
π
σ, µ+

√
2
π
σ
)

.

Proof. Follows from the inverse Mills ratio formula (see Greene (2003), p. 759).

Remark 6. Given a fixed n, suppose that in period t the players (excluding i) each protest
with probability z. Then nl̃t ∼ B(n− 1, z).

Remark 7.
∫ 1

0

[(
n−1
k

)
zk(1− z)n−1−k] dz = 1

n
for all k = 0, 1, . . . , n− 1.

Proof. For k = n− 1, this reduces to
∫ 1

0
zn−1dz = 1

n
, which is trivial. Then we can prove the
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claim by induction, as(
n− 1

k

)∫ 1

0

zk(1− z)n−1−kdz

=

(
n− 1

k

)[
1

k + 1
zk+1(1− z)n−1−k

∣∣∣1
0
+
n− 1− k

k + 1

∫ 1

0

zk+1(1− z)n−2−kdz

]
=

(
n− 1

k

)
n− 1− k

k + 1

∫ 1

0

zk+1(1− z)n−2−kdz =

(
n− 1

k + 1

)∫ 1

0

zk+1(1− z)n−2−kdz =
1

n
.

Lemma 2. There is σ2
ϵ > 0 such that, if σ2

ϵ < σ2
ϵ1, then no agent with a signal below

c
2α̃f ′(1)

+ νT ever attacks. Moreover, we can take σ2
ϵ1 = min

((
c

4α̃f ′(1)

)2
, σ2

θ
c

4α̃f ′(1)|µT−νT |

)
.

Proof. Rewriting Equation (7) with the notation for α̃ and f̃ , we find that, for any xiT ≤
c

2α̃f ′(1)
+ νT ,

∆iT (xiT ) = −c+ α̃E((θT − νT )f̃(l̃T )|xiT )

≤ −c+ α̃E((θT − νT )f̃(l̃T )1θT≥νT |xiT )

≤ −c+ α̃f ′(1)E((θT − νT )1θT≥νT |xiT )

≤ −c+ α̃f ′(1)(E(θT |xiT , θT ≥ νT )− νT )

≤ −c+ α̃f ′(1)

[
max

(
σ2
ϵµT + σ2

θxiT
σ2
θ + σ2

ϵ

, νT

)
+

√
2

π

σθσϵ√
σ2
θ + σ2

ϵ

− νT

]

≤ −c+ α̃f ′(1)

[
max

(
σ2
ϵ (µT − νT ) + σ2

θ
c

2α̃f ′(1)

σ2
θ + σ2

ϵ

, 0

)
+ σϵ

]
.

(Note that f̃(l̃) ≤ f ′(1) for l̃ ≤ n−1
n

by the convexity of f .)
There are two cases. If σ2

ϵ (µT − νT ) + σ2
θ

c
2α̃f ′(1)

≤ 0, then the above expression equals
−c + α̃f ′(1)σϵ, which is negative whenever σϵ < c

α̃f ′(1)
. If σ2

ϵ (µT − νT ) + σ2
θ

c
2α̃f ′(1)

> 0, then
the expression equals

− c+ α̃f ′(1)

[
σ2
ϵ (µT − νT ) + σ2

θ
c

2α̃f ′(1)

σ2
θ + σ2

ϵ

+ σϵ

]

≤− c+ α̃f ′(1)

[
σ2
ϵ

σ2
θ

(µT − νT ) +
c

2α̃f ′(1)
+ σϵ

]
= − c

2
+ α̃f ′(1)

[
σ2
ϵ

σ2
θ

(µT − νT ) + σϵ

]

which is at most − c
4
+ α̃f ′(1)σ

2
ϵ

σ2
θ
(µT −νT ) if σϵ ≤ c

4α̃f ′(1)
. This expression is negative whenever

σ2
ϵ < σ2

θ
c

4α̃f ′(1)|µT−νT | .
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Now assume σ2
ϵ < σ2

ϵ1 and consider a modified game in which, when an agent i receives
a signal xiT < c

2α̃f ′(1)
+ νT , she is forced mechanically to abstain, while for xiT ≥ c

2α̃f ′(1)
+ νT

she is allowed to choose an action as usual. This game clearly has the same set of equilibria
as the original. Next, we argue that it is supermodular for σ2

ϵ small enough.

Lemma 3. Assume that σ2
ϵ < σ2

ϵ2 = min

(
σ2
ϵ1, σ

2
θ

c
4α̃f ′(1)

1
|µT−νT− c

4α̃f ′(1) |
,
(

c
4α̃f ′(1)

)2
1

ln(f ′′)−ln(f ′′)

)
,

where f ′′ = supl∈(0,1) f
′′(l), f ′′ = inf l∈(0,1) f

′′(l). Then, in the restricted game where actions
are chosen only when xiT ≥ c

2α̃f ′(1)
+ νT , ∆iT (xiT ) is weakly increasing in AT .

Proof. Consider two strategy profiles AT , ÂT ⊆ [ c
2α̃f ′(1)

+ νT ,∞)×N such that AjT ⊆ ÂjT

for all j. For any i and any xiT ≥ c
2α̃f ′(1)

+ νT , we will compare ∆iT (xiT ) to ∆̂iT (xiT ). To
simplify notation, we will drop the T indices. Denote by g(θ|x) the posterior density of the
state given i’s signal xi. We then have

∆̂i(xi)−∆i(xi) =α̃

∫ ∞

−∞
(θ − ν)E

[
f̃(ˆ̃l)− f̃(l̃)|θ

]
g(θ|xi)dθ

=α̃

∫ ν

−∞
(θ − ν)E

[
f̃(l̂)− f̃(l)|θ

]
g(θ|xi)dθ

+ α̃

∫ ∞

ν

(θ − ν)E
[
f̃(ˆ̃l)− f̃(l̃)|θ

]
g(θ|xi)dθ

≥ α̃f ′′
∫ ν

−∞
(θ − ν)E

[
ˆ̃l − l̃|θ

]
g(θ|xi)dθ + α̃f ′′

∫ ∞

ν

(θ − ν)E
[
ˆ̃l − l̃|θ

]
g(θ|xi)dθ.

It is enough to show that this last expression is at least zero.34 Now note that, for all θ,

E
[
ˆ̃l − l̃|θ

]
=

∫ ∞

−∞
λ(x)

1

σϵ
ϕ

(
x− θ

σϵ

)
dx,

where λ(x) is the additional fraction of other citizens who attack when seeing a signal x
under Ã relative to A, and ϕ is the standard normal density function. Then it is enough to
show that, for any x ≥ c

2α̃f ′(1)
+ ν,

f ′′
∫ ν

−∞
(θ − ν)ϕ

(
θ − x

σϵ

)
g(θ|xi)dθ + f ′′

∫ ∞

ν

(θ − ν)ϕ

(
θ − x

σϵ

)
g(θ|xi)dθ ≥ 0. (11)

Next, we argue that the “tightest” case is when x and xi are as low as possible—that is, if
we show the result for x = xi =

c
2α̃f ′(1)

+ ν then it will automatically follow for all other x,

34The last inequality follows from the fact that f(y+a)−f(y)−f(x+a)+f(x) =
∫ x+a

x

[∫ x̃+y−x

x̃
f ′′(z)dz

]
dx̃.
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xi. The reason is that, if Equation (11) holds, then

f ′′
∫ ν

−∞
(θ − ν)ϕ

(
θ − x

σϵ

)
g(θ|xi)γ(θ)dθ + f ′′

∫ ∞

ν

(θ − ν)ϕ

(
θ − x

σϵ

)
g(θ|xi)γ(θ)dθ

f ′′
∫ ν

−∞
(θ − ν)ϕ

(
θ − x

σϵ

)
g(θ|xi)γ(ν)dθ + f ′′

∫ ∞

ν

(θ − ν)ϕ

(
θ − x

σϵ

)
g(θ|xi)γ(ν)dθ ≥ 0

for any function γ(θ) that is positive and weakly increasing. Moreover, by standard properties

of the normal distribution, ϕ
(
θ−x
σϵ

)
and g(θ|xi) =

√
σ2
θ+σ

2
ϵ

σθσϵ
ϕ

 θ−σ2
ϵ µ+σ2

θxi

σ2
θ
+σ2

ϵ
σθσϵ√
σ2
θ
+σ2

ϵ

 are both MLRP-

increasing in x and xi, respectively (i.e., g(θ|x′i)
g(θ|xi) is increasing in θ for x′i > xi, and

ϕ
(

θ−x′
σϵ

)
ϕ( θ−x

σϵ
)

is
increasing in θ for x′ > x).

Lemma 4. If σ2
ϵ ≤ σ2

θ
c

4α̃f ′(1)
1

|ν+ c
4α̃f ′(1)−µ|

, then σ2
ϵµ+σ

2
θxi

σ2
θ+σ

2
ϵ

≥ ν+ c
4α̃f ′(1)

whenever xi ≥ ν+ c
2α̃f ′(1)

.

Proof. Taking xi = ν + c
2α̃f ′(1)

, we want

σ2
ϵµ+ σ2

θ

(
ν +

c

2α̃f ′(1)

)
≥ (σ2

θ + σ2
ϵ )

(
ν +

c

4α̃f ′(1)

)
⇐⇒ σ2

ϵµ+ σ2
θ

c

4α̃f ′(1)
≥ σ2

ϵ

(
ν +

c

4α̃f ′(1)

)
⇐⇒ σ2

θ

c

4α̃f ′(1)
≥ σ2

ϵ

(
ν +

c

4α̃f ′(1)
− µ

)
.

Then it is enough to take σ2
ϵ ≤ σ2

θ
c

4α̃f ′(1)
1

ν+ c
4α̃f ′(1)−µ

if ν + c
4α̃f ′(1)

− µ > 0 and any value of σ2
ϵ

works otherwise.

Now, using our previous results and Lemma 4, it is enough to show that

f ′′
∫ ν

−∞
(θ − ν)ϕ

(
θ − x0
σϵ

)
ϕ

 θ − x0
σθσϵ√
σ2
θ+σ

2
ϵ

 dθ

+f ′′
∫ ∞

ν

(θ − ν)ϕ

(
θ − x0
σϵ

)
ϕ

 θ − x0
σθσϵ√
σ2
θ+σ

2
ϵ

 dθ ≥ 0,

where x0 = ν+ c
4α̃f ′(1)

. In turn, it is enough to show that, for each r ≥ 0, the value of the first
integrand at θ = ν− r is dominated by the value of the second integral at θ = ν+ c

4α̃f ′(1)
+ r,
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i.e., it is enough to show

f ′′rϕ

(
−r − c

4α̃f ′(1)

σϵ

)
ϕ

−r − c
4α̃f ′(1)

σθσϵ√
σ2
θ+σ

2
ϵ

 ≤ f ′′
(
r +

c

4α̃f ′(1)

)
ϕ

(
r

σϵ

)
ϕ

 r
σθσϵ√
σ2
θ+σ

2
ϵ


for all r ≥ 0. Rearranging, and since r + c

4α̃f ′(1)
≥ r, it is enough to show that

e
− 1

2σ2
ϵ

[(
r+ c

4α̃f ′(1)

)2
−r2

]
−σ2

θ+σ2
ϵ

2σ2
θ
σ2
ϵ

[(
r+ c

4α̃f ′(1)

)2
−r2

]
≤
f ′′

f ′′

and hence enough to show

e
− 1

σ2
ϵ

[(
r+ c

4α̃f ′(1)

)2
−r2

]
≤
f ′′

f ′′
.

Since the left-hand side is decreasing in r, it is enough to show

e
− 1

σ2
ϵ

(
c

4α̃f ′(1)

)2
≤
f ′′

f ′′
⇐⇒ − 1

σ2
ϵ

(
c

4α̃f ′(1)

)2

≤ ln(f ′′)− ln(f ′′),

which holds whenever σ2
ϵ ≤

(
c

4α̃f ′(1)

)2
1

ln(f ′′)−ln(f ′′)
.

It follows that, when σϵ < σϵ2, both Lemma 2 and Lemma 3 apply, and the game
(with restricted strategy space) is supermodular in actions, which implies the existence of
a greatest equilibrium and a smallest equilibrium between which all other equilibria are
bounded (Milgrom and Roberts, 1990). Lemma 2 already implies the existence of a lower
dominance region. We can similarly show the existence of an upper dominance region:

Lemma 5. Assume that σ2
ϵ < σ2

ϵ3 = min

(
σ2
ϵ2, σ

2
θ

c
α̃f ′(0)

1
|νT+ c

α̃f ′(0)−µT |

)
. Then any agent with

a signal xiT > 2 c
α̃f ′(0)

+ νT always attacks.

Proof. By Lemma 3, when σ2
ϵ < σ2

ϵ2, an agent i’s incentive to attack is lowest if other agents
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never attack. In that case

∆iT (xiT ) =− c+ α̃f̃(0) (E(θT |xiT − νT )) ≥

≥− c+ α̃f̃(0)

σ2
ϵµT + σ2

θ

(
2c

α̃f ′(0)
+ νT

)
σ2
θ + σ2

ϵ

− νT

 =

=− c+
σ2
ϵ

σ2
θ + σ2

ϵ

α̃f̃(0)(µT − νT ) + 2c
σ2
θ

σ2
θ + σ2

ϵ

f̃(0)

f ′(0)

∝− c
f ′(0)

f̃(0)
+

σ2
ϵ

σ2
θ + σ2

ϵ

α̃f ′(0)(µT − νT ) + 2c
σ2
θ

σ2
θ + σ2

ϵ

≥− c+
σ2
ϵ

σ2
θ + σ2

ϵ

α̃f ′(0)(µT − νT ) + 2c
σ2
θ

σ2
θ + σ2

ϵ

where we have used that f̃(0) ≥ f ′(0) because f is convex. This expression is positive
whenever σ2

ϵ α̃f
′(0)(µT−νT )+2cσ2

θ > c(σ2
θ+σ

2
ϵ ), or equivalently σ2

ϵ (c−α̃f ′(0)(µT−νT )) < σ2
θc

or σ2
ϵ

(
c

α̃f ′(0)
− µT + νT

)
< σ2

θ
c

α̃f ′(0)
.

(ii) Best response to symmetric threshold strategy is threshold strategy. Because
the extremal equilibria can be obtained by infinitely iterating the agents’ best-response
functions (starting with a strategy profile in which everyone always attacks, or no one ever
does, both of which are symmetric and in threshold strategies), they will necessarily be
symmetric threshold strategy profiles if we can show that the best response to a symmetric
threshold strategy profile is another symmetric threshold strategy profile. In other words,
we want to show that if all agents j ̸= i attack iff xjT ≥ x∗, then i’s incentive to attack is
strictly increasing in xiT .

More formally, let ∆iT (x, x
′, σ) be the marginal payoff from attacking for agent i when

she observes xiT = x; all other agents j attack iff xjT ≥ x′; and σϵ = σ. Then we want to
show the following:

Lemma 6. ∆iT (x, x
′, σ) is strictly increasing in x for all x, x′ ≥ c

2α̃f ′(1)
+νT and σ ∈ (0, σϵ3).

Proof. Recall that

∆iT (x, x
′, σ) = −c+ α̃

∫ ∞

−∞
(θ − νT )E

[
f̃(l̃)|θ

]
g(θ|x)dθ.

Note that (θ−νT )E
[
f̃(l̃)|θ

]
is negative for θ < νT . It is positive and strictly increasing in θ for

θ > νT (because θ−νT is strictly increasing in θ; f̃ is increasing, by the convexity of f ; and l̃
is FOSD-increasing in θ because, taking the ϵjt fixed, each xjt|θ is in fact pointwise increasing
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in θ). It follows that ∆iT (x, x
′, σ) is increasing in x if (a) g(θ|x) is FOSD-increasing in x as

a function of θ, and (b) for each θ0 < νT , g(θ0|x) is decreasing in x for all x ≥ c
2α̃f ′(1)

+ νT .
(a) follows from Remark 4. (b) holds because ϕ(z) is increasing in z for z < 0, and g(θ0|x) =
√
σ2
θ+σ

2
ϵ

σθσϵ
ϕ

 θ0−
σ2
ϵ µT+σ2

θx

σ2
θ
+σ2

ϵ
σθσϵ√
σ2
θ
+σ2

ϵ

, where σ2
ϵµT+σ2

θx

σ2
θ+σ

2
ϵ

≥ νT + c
4α̃f ′(1)

≥ νT > θ0 by Lemma 4.

Moreover, Lemmas 2 and 5 imply that any such x must be bounded between c
2α̃f ′(1)

+ νT

and 2c
α̃f ′(0)

+ νT .

(iii) Unique equilibrium in threshold strategies. Finally, we show that there is a
unique symmetric threshold strategy equilibrium, which implies that the greatest and small-
est equilibria coincide, and hence that there are no other equilibria (Milgrom and Roberts,
1990). Formally, what we will show is that, for σϵ small enough, ∆iT (x, x, σϵ) is continuous
and strictly increasing in x, so there must be a unique x∗(σϵ) for which ∆iT (x, x, σϵ) = 0, as
required.

Dropping the index iT to economize on notation, we can write

∆(x, x, σϵ) = −c+ α̃

∫ ∞

−∞
(θ − ν)E

[
f̃(l̃)|θ

] √σ2
θ + σ2

ϵ

σθσϵ
ϕ

θ − σ2
ϵµ+σ

2
θx

σ2
θ+σ

2
ϵ

σθσϵ√
σ2
θ+σ

2
ϵ

 dθ.

Since all agents j ̸= i attack iff xj ≥ x, conditional on θ, each agent attacks with probability
z := Φ

(
θ−x
σϵ

)
, drawn independently. Then l̃|θ ∼ B(n−1,z)

n
by Remark 6, i.e., for k = 0, . . . , n−

1,

Pr
(
l̃ =

k

n

)
=

(
n− 1

k

)
zk(1− z)n−1−k.

Applying the change of variable z = Φ
(
θ−x
σϵ

)
, so dz = ϕ

(
θ−x
σϵ

)
1
σϵ
dθ, and denoting

ψ = Φ−1, so θ−x
σϵ

= ψ(z) and θ = x+ σϵψ(z), we can rewrite our previous expression as:

∆(x, x, σϵ) = −c+ α̃

∫ 1

0

(x− ν + σϵψ(z))E
[
f̃(l̃)|z

] √σ2
θ + σ2

ϵ

σθ

ϕ

 θ−σ2
ϵ µ+σ2

θx

σ2
θ
+σ2

ϵ
σθσϵ√
σ2
θ
+σ2

ϵ


ϕ(ψ(z))

dz

∆(x, x, σϵ) = −c+ α̃

∫ 1

0

(x− ν + σϵψ(z))E
[
f̃(l̃)|z

] √σ2
θ + σ2

ϵ

σθ

ϕ

(
(x−µ)σϵ

σθ
√
σ2
θ+σ

2
ϵ

+ ψ(z)

√
σ2
ϵ+σ

2
θ

σθ

)
ϕ(ψ(z))

dz.
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Now note that the expression (x−ν+σϵψ(z))
√
σ2
θ+σ

2
ϵ

σθ

ϕ

(
(x−µ)σϵ

σθ

√
σ2
θ
+σ2

ϵ

+ψ(z)

√
σ2
ϵ+σ2

θ
σθ

)
ϕ(ψ(z))

defines a func-
tion h of its arguments x, z, µ, ν, σϵ, σθ that is well defined and C∞ over all x, µ, ν ∈ R,
z ∈ (0, 1), σθ > 0 and, importantly, all σϵ ∈ R, including zero (and negative values). More-
over, we can show that the integrand h(·)E[f̃(l̃)|z] is uniformly bounded by an integrable
function for all σϵ below a threshold. Indeed, f̃ ≤ n. Using that Φ(y) ≤ ey for y < 0, we
obtain z ≤ eψ(z), or ψ(z) ≥ ln(z) =⇒ |ψ(z)| ≤ | ln(z)| for z < 0.5. Using that Φ(y) ≤ ϕ(y)

|y|

for y < 0, we obtain z|ψ(z)| ≤ ϕ(ψ(z)) = 1√
2π
e

−1
2
ψ(z)2 for z < 0.5, so

ϕ

(
(x−µ)σϵ

σθ
√
σ2
θ+σ

2
ϵ

+ ψ(z)

√
σ2
ϵ+σ

2
θ

σθ

)
ϕ(ψ(z))

= e
− 1

2

( (x−µ)σϵ

σθ

√
σ2
θ
+σ2

ϵ

+ψ(z)

√
σ2
ϵ+σ2

θ
σθ

)2

−ψ(z)2


≤ e
1
2

[(
(x−µ)

σ2
θ

)2

σ2
ϵ+2

(x−µ)

σ2
θ

|ψ(z)|σϵ+σθ
σθ

σϵ+ψ(z)2
(

σ2
ϵ

σ2
θ

+2 σϵ
σθ

)]

≤ eAσ
2
ϵ+|ψ(z)|(Bσ2

ϵ+Cσϵ)+ψ(z)
2(Dσ2

ϵ+σϵ)

for some A, B, C, D, E > 0 independent of z and σ2
ϵ . For z low enough that |ψ(z)| > 1,

this expression is bounded above by

eψ(z)
2((A+B+D)σ2

ϵ+(C+E)σϵ ≤
(

1√
2πz|ψ(z)|

)2[(A+B+D)σ2
ϵ+(C+E)σϵ]

≤
(
1

z

)2[(A+B+D)σ2
ϵ+(C+E)σϵ]

.

Hence h can be bounded by a function of the form a+| ln(z)|
zβ

, and is well behaved for any
σϵ such that the exponent β is less than 1, e.g., σϵ < 1

2(A+B+C+D+E)
. An analogous bound

can be given for z close to 1. It follows by the dominated convergence theorem that ∆ is a
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continuous function of its arguments, in particular at σϵ = 0, where

∆(x, x, 0) = −c+ α̃

∫ 1

0

(x− ν)E[f̃(l̃)|z]dz

= −c+ α̃(x− ν)

∫ 1

0

n−1∑
k=0

Pr
(
l̃ =

k

n

∣∣∣z)(f (k + 1

n

)
− f

(
k

n

))
dz

= −c+ α̃(x− ν)
n−1∑
k=0

(
f

(
k + 1

n

)
− f

(
k

n

))∫ 1

0

Pr
(
l̃ =

k

n

∣∣∣z) dz
= −c+ α̃(x− ν)

n−1∑
k=0

(
f

(
k + 1

n

)
− f

(
k

n

))
1

n

= −c+ α̃(x− ν)[f(1)− f(0)],

which yields the limit threshold x∗t . (Note that we have used Remark 7 in the fourth step.)
But we need to go a step further. To prove that ∆ is strictly increasing in x for σϵ small,
we will show that ∂∆

∂x
(x, x, σϵ) converges uniformly to ∂∆

∂x
(x, x, 0) ≡ α̃[f(1) − f(0)] > 0 as

σϵ → 0.
We can use a similar argument. Denoting (x−µ)σϵ

σθ
√
σ2
θ+σ

2
ϵ

+ ψ(z)

√
σ2
ϵ+σ

2
θ

σθ
= w, and using that

ϕ′(x) = −xϕ(x), note that

∂E[f̃(l̃)|z]h(·)
∂x

= E[f̃(l̃)|z]
√
σ2
θ + σ2

ϵ

σθ

ϕ (w)

ϕ(ψ(z))
+ (x− ν + σϵψ(z))E[f̃(l̃)|z]

σϵ
σ2
θ

ϕ (w)

ϕ(ψ(z))
w.

Using the same bounds as before, the first term is bounded by an expression of the form
1
zβ

for z close to zero, while the second is bounded by an expression of the form ln(z)2

zβ
for z

close to zero, where β < 1 if σϵ is small. Hence this expression is bounded (uniformly for x,
µ, ν, σθ, and σϵ in any closed intervals, with σθ strictly positive) by an integrable function.
The Leibniz integral rule then implies that ∂∆

∂x
(x, x, σϵ) ≡ α̃

∫ 1

0
∂E[f̃(l̃)|z]h(·)

∂x
dz. Moreover, for

any convergent sequence Yk = (xk, µk, νk, σθk, σϵk) with limit Y∞, we have that ∂∆
∂x

(Yk) −−−→
k→∞

∂∆
∂x

(Y∞) by the dominated convergence theorem, since the integrand E[f̃(l̃)|z]h(·) is obviously
continuous in the argument Y and so converges pointwise. But then ∂∆

∂x
(Y ) is a continuous

function of Y . Within any compact set, then, it must be uniformly continuous by the Heine-
Cantor theorem. In particular, we can take a rectangle where σϵ ∈ [0, 1] and the other
variables lie in any closed interval (with minσ2

θ > 0). Then, by the uniform continuity,
there is σϵ such that, if σϵ ∈ (0, σϵ) and the other variables lie in their respective intervals,
∂∆
∂x

(x, µ, ν, σθ, σϵ) − ∂∆
∂x

(x, µ, ν, σθ, 0) <
α̃
2
[f(1) − f(0)], whence ∂∆

∂x
(x, µ, ν, σθ, σϵ) > 0. In

particular, taking the range of x to contain
[
ν + c

2α̃f ′(1)
, ν + 2c

α̃f ′(0)

]
, this argument guarantees
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that there is σϵ such that, for all σϵ ∈ (0, σϵ), ∂∆
∂x

is strictly increasing at every x between
the dominance regions, which yields the uniqueness.

(iv) Equilibrium threshold as σϵ → 0. Our previous argument implies that, as σϵ → 0,
x∗(σϵ) → c

α̃[f(1)−f(0)] + ν; indeed, if not, there would be η0 > 0 and a sequence σk → 0

such that either x∗(σk) ≥ c
α̃[f(1)−f(0)] + ν + η0 for all k or x∗(σk) ≤ c

α̃[f(1)−f(0)] + ν − η0

for all k. But our formula for ∆(x, x, 0) and the continuity of ∆ would imply that, for k
high enough, ∆(x, x, σk) > 0 at any x ≥ c

α̃[f(1)−f(0)] + ν + η0, and ∆(x, x, σk) < 0 at any
x ≤ c

α̃[f(1)−f(0)] + ν − η0, a contradiction.
□

A.4 Proof of Proposition 1

The marginal payoff from attacking in period t is given by the expression

∆it = −c+ E
[
α̃(θt − νt − δU t+1)f̃(l̃t)|xit

]
.

By the same argument as in Lemma 1, for σϵ small enough, this game has a unique
equilibrium, which is symmetric and in threshold strategies. In fact, this game is equivalent
to the game from period T , if we denote νt + δU t+1 ≡ νT . Note that the proof of Lemma
1 yields the uniqueness result in this Proposition only because we showed that a threshold
σϵ can be found below which uniqueness is guaranteed, regardless of the value that other
parameters (in particular, ν) take, as long as they lie in a compact interval. Indeed, in
general the equilibrium in periods t + 1 and onwards depends on the value of σϵ; hence the
continuation value δU t+1 is a function of σϵ. Thus, for periods t < T , we need to show that
there is a threshold σϵ such that, for all σϵ < σϵ, the game with (endogenous) status quo
payoff ν = νt + δU t+1(σϵ) has a unique equilibrium. Our proof from Lemma 1 guarantees
that we can find a threshold σϵ that works whenever ν lies, for instance, in [νt+ δu, νt+ δu],
where u, u are the infimum and supremum of the game’s possible continuation payoffs across
all feasible strategy profiles. This interval is guaranteed to contain νt + δU t+1(σϵ).

Because of the continuity of ∆ (in particular with respect to both σϵ and ν), our proof
of Lemma 1 also implies that, as σϵ → 0, x∗t (σϵ, σθ) → x∗t (σθ), where

x∗t (σθ) =
c

α̃[f(1)− f(0)]
+ νt + δU t+1(σθ),

where U t+1(σθ) = limσϵ→0 U t+1(σϵ, σθ). The convergence of U t+1(σϵ, σθ) and x∗t (σϵ, σθ) can
be shown by backward induction from T , using that if x∗t+1 converges, then U t+1 converges,
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and so x∗t does as well.
As for Equation (4), for general values of σϵ and σθ, let Ut(x, σϵ, σθ) be the expected

continuation hedonic utility in equilibrium of an agent i starting at time t, conditional on
seeing xit = x, and U t(σϵ, σθ) be i’s expected continuation hedonic utility before seeing xit
(both of which, by symmetry, are the same for all agents). Then we have

Ut(x, σϵ, σθ) = −c1{x≥x∗t (σϵ,σθ)}

+E
[(
θt − νt − δU t+1(σϵ, σθ)

)
f(l)|x

]
+ νt + δU t+1(σϵ, σθ)

U t(σϵ, σθ) = −cΦ

(
µt − x∗t (σϵ, σθ)√

σ2
ϵ + σ2

θ

)
+

E
[(
θt − νt − δU t+1(σϵ, σθ)

)
f(l)

]
+ νt + δU t+1(σϵ, σθ)

As σϵ → 0, U t(σϵ, σθ) converges to

U t(σθ) = −cΦ
(
µt − x∗t (σθ)

σθ

)
+ E

[(
θt − νt − δU t+1(σθ)

)
f
(
1{θt>x∗t (σθ)}

)]
+ νt + δU t+1(σθ).

As σθ → 0, U t(σθ) converges to

U t = −c1{µt>x∗t } +
(
µt − νt − δU t+1

)
f
(
1{µt>x∗t }

)
+ νt + δU t+1,

and x∗t (σθ) converges to

x∗t =
c

α̃[f(1)− f(0)]
+ νt + δU t+1,

as we wanted.
□

A.5 Proof of Proposition 2

The generalizations of µ0, µ∗ and µ∗ to the case of α > 0 are

µ0 =
c

α̃[f(1)− f(0)]
+

ν

1− δ
,

µ∗ =
c

α̃[f(1)− f(0)]
+

δc

1− δ

f(0)

α[f(1)− f(0)]
+

ν

1− δ
,

µ∗ =
c

α̃[f(1)− f(0)]
+

δc

1− δ

[
f(1)

α[f(1)− f(0)]
− 1

]
+

ν

1− δ
.
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For part (i), assume that µt = µ for all t, with µ < µ0. Then, using Equation (3), we can
calculate

x∗T =
c

α̃[f(1)− f(0)]
+

ν

1− δ
.

Since µ < µ0, as σθ goes to zero, for σϵ(σθ) small enough, we are in the limit equilibrium
characterized in Proposition 1 in the case µt < x∗t , in which θt < x∗t with probability going
to one, and lt converges in probability to zero. Hence

UT = f(0)µ+ (1− f(0))
ν

1− δ
.

We can then calculate

x∗T−1 =
c

α̃[f(1)− f(0)]
+ ν + δf(0)µ+ δ(1− f(0))

ν

1− δ
.

There are now two cases. If µ ∈
(

ν
1−δ , µ0

)
, then automatically x∗T−1 > x∗T > µ, so that almost

no one attacks in period T − 1 either. By backward induction, we obtain that

U t = f(0)
1− δT−t+1(1− f(0))T−t+1

1− δ(1− f(0))
µ+

[
1− f(0)

1− δT−t+1(1− f(0))T−t+1

1− δ(1− f(0))

]
ν

1− δ

x∗t−1 =
c

α̃[f(1)− f(0)]
+ ν + δU t,

whence U t > U t+1 and x∗t > x∗t+1 > . . . > µ for all t, and almost no one ever attacks in
equilibrium. On the other hand, if µ ≤ ν

1−δ , then U t and x∗t−1 obey the same equations, but
now x∗t > µ instead follows from the fact that x∗t > ν+ δU t+1 which is a convex combination
of µ and ν

1−δ , hence higher than µ.
For part (ii), suppose that µt = µ > µ∗ for all t. Then, from Equation (4), we know that,

if x∗t < µ for all t ≥ t0, then for all t between t0 and T − 1,

U t = −c+ f(1)µ+ (1− f(1))(ν + δU t+1),

with UT = −c+ f(1)µ+ (1− f(1)) ν
1−δ . Equivalently, for t ≥ t0,

U t =
1− δT−t+1(1− f(1))T−t+1

1− δ(1− f(1))
(−c+ f(1)µ) +

[
1− f(1)

1− δT−t+1(1− f(1))T−t+1

1− δ(1− f(1))

]
ν

1− δ
.

This is a convex combination of µ− c
f(1)

and ν
1−δ , with the weight on the first term decreasing
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in t. Since

µ∗ ≥ c

f(1)
+

ν

1− δ
,

with equality iff α̃ = 1 and f(0) = 0, and µ > µ∗, we know that µ − c
f(1)

> ν
1−δ , so

U t0 > . . . > UT >
ν

1−δ and x∗t0−1 > . . . > x∗T . For most players to attack in equilibrium at
time t0 − 1, we need x∗t0−1 < µ.

Iterating, to prove the result we need to show that x∗t < µ for all t with the thresholds
calculated as above, i.e., under the assumption that all agents will attack in future periods.
Because the sequence is decreasing in t, it is enough to show that µ > limt→−∞ x∗t , i.e.,

µ >
c

α̃[f(1)− f(0)]
+ν + δ

−c+ f(1)µ

1− δ(1− f(1))
+ δ

(1− δ)(1− f(1))

1− δ + δf(1)

ν

1− δ

⇐⇒ 1− δ

1− δ + δf(1)
µ >

c

α̃[f(1)− f(0)]
− δc

1− δ + δf(1)
+

ν

1− δ + δf(1)

⇐⇒ µ >
c

α̃[f(1)− f(0)]

(
1 +

δf(1)

1− δ

)
− δc

1− δ
+

ν

1− δ
= µ∗.

Finally, for part (iii), it is convenient to relabel time periods as follows: set T = 0 and
assume the game is played beginning at any integer t < 0. Let (x∗t )t∈Z≤0

be the sequence of
equilibrium attack thresholds for this game, as characterized in Proposition 1, for σθ → 0

with σϵ small enough. We will show that, generically, there are infinitely many values of t for
which x∗t > µt and infinitely many for which x∗t < µt. (We will discard the non-generic case
in which µt = x∗t for any t. Note that, given values of µt+1, . . . , µ0, and the other parameters
satisfying this constraint, the value of U t+1 is uniquely pinned down, and hence so is x∗t , by
Equation (3), so there is a single real value of µt that is being ruled out.)

Suppose the former statement is not true, so that x∗t ≤ µt for all t ≤ t0 for some t0. By
our genericity assumption, we must then have x∗t < µt for all t ≤ t0, and

U t = −c+ f(1)µt + (1− f(1))(ν + δU t+1) (12)

for all t ≤ t0. Let µ = lim inft→−∞ µt. Let (ts)s∈N be a subsequence such that µ = lims→∞ µts .
Then, taking the limit of the inequality x∗ts < µts as s → ∞, we must have x∗ ≤ µ for any
x∗ that the x∗ts accumulate to. In particular, lim inf x∗t ≤ µ, or equivalently

c

α̃[f(1)− f(0)]
+ ν + δ lim inf U t ≤ µ.

Equation (12) implies that U t, and U t′ for all t′ < t, are increasing functions of µt. Hence
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lim inf U t is bounded below by a hypothetical Ũ calculated under the assumptions that
everyone always attacks and that µt = µ for all t, i.e.,

lim inf U t ≥ Ũ =
−c+ f(1)µ

1− δ + δf(1)
+

(1− f(1))ν

1− δ + δf(1)
,

calculating Ũ as in part (ii).
Then it must be that

c

α̃[f(1)− f(0)]
+ ν + δ

−c+ f(1)µ

1− δ + δf(1)
+ δ

(1− f(1))ν

1− δ + δf(1)
≤ µ

⇐⇒ µ∗ ≤ µ.

Indeed, by construction, µ∗ is the threshold value of µ which would make this inequality
hold with equality. But, since µt ≤ µ∗ − η for all t, µ ≤ µ∗ − η < µ∗, a contradiction.

The proof for the latter part of the claim is similar. Suppose that x∗t ≥ µt for all t below
some t0. By our genericity assumption, we must have x∗t > µt for all t ≤ t0, so

U t = f(0)µt + (1− f(0))(ν + δU t+1) (13)

for all t ≤ t0. Letting µ = lim supt→−∞ µt, we must have lim sup x∗t ≥ µ, or equivalently

c

α̃[f(1)− f(0)]
+ ν + δ lim supU t ≥ µ.

In turn U t is bounded above by a hypothetical Û calculated under the assumption that no
one attacks in the future and µt = µ for all t, i.e.,

lim supU t ≤ Û =
f(0)µ

1− δ + δf(0)
+

(1− f(0))ν

1− δ + δf(0)
.

Then we must have

c

α̃[f(1)− f(0)]
+ ν + δ

f(0)µ

1− δ + δf(0)
+ δ

(1− f(0))ν

1− δ + δf(0)
≥ µ

⇐⇒ µ∗ ≥ µ.

But by assumption µ ≥ µ∗ + η > µ∗, a contradiction.
□
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A.6 Proof of Proposition 3

By Equation (4), ∂x∗t
∂νt

= 1. For t′ > t, assuming a marginal change that does not change the
equilibrium actions, x∗t only depends on νt′ through U t+1, which only depends on νt′ through
U t+2, . . . , which only depends on νt′ through U t′ . So

∂x∗t
∂νt′

= δ
∂U t+1

∂νt′
= δ

t′−t−1∏
s=1

∂U t+s

∂U t+s+1

∂U t′

∂νt′
= δt

′−t
t′−t∏
s=1

(
1− f(1µt+s>x∗t+s

)
)
≥ 0,

with equality only if f(1) = 1 and µt+s > x∗t+s for some s between 1 and t′−t. As for changes
in µt, by Equation (4), ∂x∗t

∂µt
= 0. However, ∂Ut

∂µt
= f(1µt+s>x∗t+s

). Hence, for t′ > t,

∂x∗t
∂µt′

= δ
t′−t−1∏
s=1

∂U t+s

∂U t+s+1

∂U t′

∂µt′
= δt

′−t
t′−t−1∏
s=1

(
1− f(1µt+s>x∗t+s

)
)
f(1µt′>x∗t′ ) ≥ 0,

with equality only if f(1) = 1 and µt+s > x∗t+s for some s between 1 and t′−t−1, or f(0) = 0

and µt′ < x∗t′ .
□

A.7 Proof of Remark 3

The social planner aims to maximize the sum of the citizens’ (expected) ex ante utilities,∑n
i=1

∑T
t=1 δ

tuit. The threshold in Equation (5) then follows from the following argument.
Let σ∗ be a strategy profile that maximizes social welfare. (It is not hard to prove

existence.) Consider now the game Gα with altruistic citizens (Section 6.1) with altruism
parameter α. (The solution of this model is given in the proofs of Lemma 1 and Proposition
1.) Take α = 1, so that every citizen has the same payoff function, which coincides with the
planner’s.

We claim that σ∗ must be an equilibrium of G1. Indeed, if it is not, then, starting from
the conjectured strategy profile σ∗, there must be a player i with a profitable deviation
from σ∗

i to another strategy σ̃i. But, since all the players have the same payoff function as
the planner, this means that social welfare must be higher under (σ̃i, σ

∗
−i) than under σ∗,

contradicting the optimality of σ∗. Since G1 has a unique equilibrium (Proposition 1), the
threshold xspt then comes simply from setting α = 1 in Equation (8).

(i) follows from the fact that the planner’s payoff from any fixed strategy profile weakly
increases as µt or νt increases; since the planner has full control over the players’ strategies,
her optimal payoff must increase by at least as much as if strategies are held fixed (if anything,
re-optimizing given the new parameters might yield further gains).
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(ii) follows from the fact that, per Proposition 2, µ0(1) = µ∗(1) = µ∗(1) if f(0) = 0.
Then there are protests in every period if µ > µ∗ and never if µ < µ∗.

□

A.8 Derivation of Equation (9)

By analogous arguments to those used in the proof of Proposition 1, x∗t (σϵ, σθ) is the unique
value of x that solves the equation

0 =− c+ E

[
((1− ρ)θt − νt − δU t+1)

(
f

(
l̃t +

1

n

)
− f

(
l̃t

))
+ ρθtf

(
l̃t +

1

n

)
|xit = x

]
−−−→
σϵ→0

− c+ ((1− ρ)x− νt − δU t+1)
f(1)− f(0)

n
+ ρx

∑n
k=1 f

(
k
n

)
n

,

which yields Equation (9).
□

A.9 A Model of Fighting to Survive

This extension demonstrates the flexibility of our framework by considering a variant of
the model with the following properties. Suppose now that, while the movement survives,
the agents receive flow payoffs θt in every period. If the movement is crushed in period t,
there are no more opportunities to demonstrate in the future, and agents receive a lump
sum νt once and the game ends. (Of course, νt can represent a discounted sum of payoffs.)
Demonstrating still costs c. The probability that the movement survives period t is f(lt).

Then the net payoff of demonstrating for the marginal agent is

−c+ α̃E
[
(θt + δU t+1 − νt)|xit = x∗t (σϵ)

]
,

where U t+1 is the continuation payoff from arriving at t+ 1 with the movement still active.
Hence, the limit equilibrium cutoff as σϵ → 0 is now

x∗t =
c

α̃[f(1)− f(0)]
+ νt − δU t+1. (14)

As in the main model, agents are reluctant to protest relative to the social planner’s solution
(because they do not fully internalize the benefits), which means that a marginal change
in the future parameters which shifts the equilibrium from not attacking to attacking in a
future period will discontinuously increase the players’ payoffs. But, in this variant of the
model, such an increase in continuation utilities encourages more protests today, since the
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citizens are more likely to accrue that higher continuation utility precisely if they do protest
today. (Mechanically, this appears in Equation (14) as a negative sign in front of the term
δU t+1: an increasing continuation utility from survival lowers the threshold x∗t for protesting
today.) More generally, expectations of future agitation reinforce, rather than discourage,
incentives to fight today.

The logic leading to intermittent protests in the main model is then reversed, leading
instead to bang-bang solutions. For example, then, if we assume νt ≡ 0, instead of there
being a range [µ∗, µ

∗] of protest payoffs leading to intermittent protests, there is a single
threshold µ∗ = c

α̃[f(1)−f(0)] such that, if µt < µ∗ for all t, almost nobody protests in each
period, while if µt > µ∗ for all t, most citizens protest in each period.

Chassang (2010) studies a closely related model, with two players who must both coop-
erate for the relationship (analogously, the protest) to survive, and a stationary environment
(which does not allow free variation over time of µt or νt) but with an infinite horizon. In the
infinite-horizon case, the dynamic complementarity discussed in the previous two paragraphs
is still present, but we can no longer backward induct from a last period to find a unique
equilibrium. Within his model, Chassang provides an elegant characterization of (potentially
multiple) infinite-horizon equilibria that are Markovian in a certain sense.
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